306 research outputs found

    Preparation and characterization of polycaprolactone microspheres by electrospraying

    Get PDF
    This is the author accepted manuscript. Published online: 13 Sep 2016. The final version to be made available from the publisher via the DOI in this record.The ability to reproducibly produce and effectively collect electrosprayed polymeric microspheres with controlled morphology and size in bulk form is challenging. In this study, microparticles were produced by electrospraying polycaprolactone (PCL) of various molecular weights and solution concentrations in chloroform, and by collecting materials on different substrates. The resultant PCL microparticles were characterized by optical and electron microscopy to investigate the effect of molecular weight, solution concentration, applied voltage, working distance and flow rate on their morphology and size. The work demonstrates the key role of a moderate molecular weight and/or solution concentration in the formation of spherical PCL particles via an electrospraying process. Increasing the applied voltage was found to produce smaller and more uniform PCL microparticles. There was a relatively low increase in the particle average size with an increase in the working distance and flow rate. Four types of substrates were adopted to collect electrosprayed PCL particles: a glass slide, aluminium foil, liquid bath and copper wire. Unlike 2D bulk structures collected on the other substrates, a 3D tubular structure of microspheres was formed on the copper wire and could find application in the construction of 3D tumour mimics.The financial support received from the Cancer Research UK (CRUK) and Engineering and Physical Sciences Research Council (ESPRC) Cancer Imaging Centre in Cambridge and Manchester (C8742/A18097) is acknowledged

    Axon diameter mapping in the presence of orientation dispersion using diffusion MRI

    Get PDF
    Axon diameter mapping using diffusion MRI provides more specific biomarkers than DTI indices. Earlier works assume a model of strictly parallel axons. However, such approximation is inadequate for most white matter regions in which axons fan or bend, resulting in significant orientation dispersion. Such dispersion, if unaccounted for, leads to overestimation of axon diameters. We ameliorates this problem by proposing a model that captures orientation dispersion explicitly. We demonstrate that recovery of axon diameters is possible even in the presence of orientation dispersion, supporting accurate axon diameter mapping in a much wider set of white matter than previously possibl

    Redox changes during the cell cycle in the embryonic root meristem of Arabidopsis thaliana

    Get PDF
    Aims: The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. Results: Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. Innovation: These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. Conclusions: Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem

    Runge-Kutta residual distribution schemes

    Get PDF
    We are concerned with the solution of time-dependent non-linear hyperbolic partial differential equations. We investigate the combination of residual distribution methods with a consistent mass matrix (discretisation in space) and a Runge–Kutta-type time-stepping (discretisation in time). The introduced non-linear blending procedure allows us to retain the explicit character of the time-stepping procedure. The resulting methods are second order accurate provided that both spatial and temporal approximations are. The proposed approach results in a global linear system that has to be solved at each time-step. An efficient way of solving this system is also proposed. To test and validate this new framework, we perform extensive numerical experiments on a wide variety of classical problems. An extensive numerical comparison of our approach with other multi-stage residual distribution schemes is also given

    Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Get PDF
    BACKGROUND: The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. METHODS: This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. RESULTS: The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs) delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure of distance between histograms of comparable ROIs allowed us to increase the sensitivity and specificity rate for the classification of 24 images of pain patients when compared to common statistical comparisons. CONCLUSIONS: We developed a complete set of automated techniques for the computerised assessment of thermal images to assess pain-related thermal dysfunction

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Effects of Clinically Relevant MPL Mutations in the Transmembrane Domain Revealed at the Atomic Level through Computational Modeling

    Get PDF
    BACKGROUND: Mutations in the thrombopoietin receptor (MPL) may activate relevant pathways and lead to chronic myeloproliferative neoplasms (MPNs). The mechanisms of MPL activation remain elusive because of a lack of experimental structures. Modern computational biology techniques were utilized to explore the mechanisms of MPL protein activation due to various mutations. RESULTS: Transmembrane (TM) domain predictions, homology modeling, ab initio protein structure prediction, and molecular dynamics (MD) simulations were used to build structural dynamic models of wild-type and four clinically observed mutants of MPL. The simulation results suggest that S505 and W515 are important in keeping the TM domain in its correct position within the membrane. Mutations at either of these two positions cause movement of the TM domain, altering the conformation of the nearby intracellular domain in unexpected ways, and may cause the unwanted constitutive activation of MPL's kinase partner, JAK2. CONCLUSIONS: Our findings represent the first full-scale molecular dynamics simulations of the wild-type and clinically observed mutants of the MPL protein, a critical element of the MPL-JAK2-STAT signaling pathway. In contrast to usual explanations for the activation mechanism that are based on the relative translational movement between rigid domains of MPL, our results suggest that mutations within the TM region could result in conformational changes including tilt and rotation (azimuthal) angles along the membrane axis. Such changes may significantly alter the conformation of the adjacent and intrinsically flexible intracellular domain. Hence, caution should be exercised when interpreting experimental evidence based on rigid models of cytokine receptors or similar systems
    corecore